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Abstract:  Self-Organizing Maps is an unsupervised artificial neural network that is trained to produce a low-dimensional 

representation of high-dimensional data. In this work, a novel approach is made by introducing lattice vectors to the input space of 

self-organizing maps. The algebraic and geometric properties of lattice vectors in the linear initialization method of weight 

initialization in self-organizing maps are studied. It is also found that each data vector in the input space of self-organizing maps 

will lie in the fundamental region associated with the basis vectors of the lattice. The experimental analysis is done by taking dataset 

from UCI machine learning repository and using MATLAB R2021a. 

 

Index Terms – Determinant, Fundamental parallelepiped, Lattice vectors, Projection, Self-Organizing Maps. 

I. INTRODUCTION 

Self-Organizing Maps (SOM) is introduced by Teuvo Kohonen in 1980’s. It plays an important role in the visualization of high-

dimensional data in a low-dimensional space. Many works have been done in the field of supervised and unsupervised machine 

learning using lattice theory. The work of Laurentiu Iancu [9], uses lattice algebra approach to neural computation. The study of 

Bhavana and Sarma [10], used the concept lattice in dimensionality reduction by matrix factorization in data mining. Noah Stephens 

[15], works on the Gaussian measure over lattices. Kelechi Chuwkunonyerem emerole [6], works on optimizing Gaussian measure 

of Lattices using dimensionality reduction. Mohammad-Reza Sadeghi et. al [17], work on feed-forward neural network lattice 

decoding algorithm in deep learning. The term ‘lattice’ has two meanings-one is related to the theory of partial ordering on sets and 

the other is related to discrete subgroups of ℝ𝑛 [8]. Lattices have many significant applications in coding theory and cryptography. 

In this work, a novel approach to an unsupervised machine learning technique called Self-Organizing Maps using lattice vectors is 

presented by considering lattices as additive subgroups of ℝ𝑛.  

The paper is structured as follows. Section 1 gives the introduction. In Section 2 preliminaries of Self-Organizing Maps, 

architecture of SOM, and basic mathematical definitions are discussed. Section 3 presents mathematical analysis of SOM using lattice 

vectors. In Section 4 experimental analysis of theorems in Section 3 is done using MATLAB R2021a. Finally, the paper ends with a 

conclusion in Section 5. 

II. PRELIMINARIES 

2.1 Self-Organizing Maps 

In SOM the input layer consists of neurons representing the features of the input vectors in ℝ𝑛. The output layer consists of 

neurons representing the clusters, and associated with each neuron in the output layer there is a weight vector in ℝ𝑛. The minimum 

distance between the input vector and the weight vector in the output layer is evaluated using the Euclidean distance [11]. The input 

vector is mapped into the neuron with minimum distance. The weight initialization is done using linear initialization in which weight 

vectors are spanned by the eigenvectors corresponding to the largest two eigenvalues of the input data [1], [2], [16]. Let {𝑢1, 𝑢2} be 

two such eigenvectors formed. Throughout this work {𝑢1, 𝑢2} are linearly independent vectors in ℝ𝑛 . 
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Figure 1: Architecture of SOM 

 

Definition 2.1[5],[8]: Let {𝑏1 
⃗⃗ ⃗⃗  , 𝑏2 

⃗⃗ ⃗⃗  , … , 𝑏𝑚 
⃗⃗⃗⃗⃗⃗ } be linearly independent set of column vectors in ℝ𝑛 , 𝑛 ≥ 𝑚. The lattice generated by 

{𝑏1 
⃗⃗ ⃗⃗  , 𝑏2 

⃗⃗ ⃗⃗  , … , 𝑏𝑚 
⃗⃗⃗⃗⃗⃗ } is the set 𝐿 = {∑ 𝑙𝑖𝑏𝑖

⃗⃗⃗  𝑚
𝑖=1 : 𝑙𝑖 ∈ ℤ} of integer linear combinations of  𝑏𝑖

⃗⃗⃗  . The vectors {𝑏1 
⃗⃗ ⃗⃗  , 𝑏2 

⃗⃗ ⃗⃗  , … , 𝑏𝑚 
⃗⃗⃗⃗⃗⃗ } are called lattice 

basis. 

Definition 2.2[8]: A basis 𝐵 of a lattice 𝐿 is a 𝑛 × 𝑚 matrix formed by taking the columns to be basis vectors 𝑏𝑖
⃗⃗⃗  , 𝑖 = 1,2, … ,𝑚.  Thus 

𝐿 = {𝐵𝑥 : 𝑥 ∈ ℤ𝑚}. 
Definition 2.3[14][18]: A lattice 𝐿 ⊆ ℝ𝑛 is called discrete if ∃ 𝜀 > 0 such that ∀ 𝑥 ≠ 𝑦 ∈ 𝐿, ‖𝑥 − 𝑦‖ ≥ 𝜀. 
Definition 2.4[14][18]: A subset 𝐿 ⊆ ℝ𝑛 is called additive subgroup of ℝ𝑛 if  ∀ 𝑥, 𝑦 ∈ 𝐿, 𝑥 − 𝑦 ∈ 𝐿. 
Definition 2.5[12]: A set 𝐹 ⊆ ℝ𝑛 is called a fundamental region of a lattice 𝐿 ⊆ ℝ𝑛 if the following conditions are satisfied: 

1. ℝ𝑛 = ⋃ (𝑣⃗ ∈𝐿 𝑣 + 𝐹) 

2. For every 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ ∈ 𝐿  with 𝑣1⃗⃗⃗⃗ ≠ 𝑣2⃗⃗⃗⃗ , (𝑣1⃗⃗⃗⃗ + 𝐹) ∩ (𝑣2⃗⃗⃗⃗ + 𝐹) = 𝜙. 
The cosets of lattice 𝐿 in ℝ𝑛 forms the fundamental region. An important fundamental region is a fundamental parallelepiped. 

Definition 2.6[7][12]: Given two linearly independent vectors 𝑢1, 𝑢2 ∈ ℝ𝑛 their fundamental parallelepiped is defined as  

𝑃(𝑢1, 𝑢2) = {∑ 𝑥𝑖
2
𝑖=1 𝑢𝑖⃗⃗  ⃗: 𝑥𝑖 ∈ ℝ, 0 ≤ 𝑥𝑖 < 1}. 𝑃(𝑢1, 𝑢2) is half-open. 

Example 2.7: The lattice ℒ with basis vectors 𝑢1⃗⃗⃗⃗ = (1,0) and 𝑢2⃗⃗⃗⃗ = (0,1) in ℝ2 and its associated fundamental parallelepiped is 

shown in Figure 2. The lattice ℒ with basis in a two dimensional space can be easily visualized but for greater than two it is difficult 

to visualize. So a fundamental parallelepiped associated with the basis vectors 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  in ℝ2 is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2 

 

Theorem 2.8[8]:  Let 𝐵 be a 𝑛 × 𝑚 basis matrix for a lattice 𝐿 where 𝑛 > 𝑚. Then there is a linear map 𝑇:ℝ𝑛 → ℝ𝑚 such that 𝑇(𝐿) 

is a rank 𝑚 lattice and ‖𝑇(𝑢⃗ )‖ = ‖𝑢⃗ ‖ for all 𝑢⃗ ∈ 𝐿. If the linear map is represented by a 𝑚 × 𝑛 matrix 𝑇 so that 𝑇(𝑢⃗ ) = 𝑇𝑢⃗  then a 

basis matrix for the image of 𝐿 under the projection 𝑇 is the 𝑚 × 𝑚 matrix 𝑇𝐵 which is invertible. 

Definition 2.9[8]: The determinant of a lattice 𝐿 with basis 𝐵 is |det (𝑃𝐵)| , where 𝑃 is the projection of Theorem 2.8. 
 

 

III. MATHEMATICAL ANALYSIS 

Definition 3.1: In linear initialization method of weight initialization in SOM, let {𝑢1, 𝑢2} be the eigenvectors corresponding to the 

largest two eigenvalues of the input vectors in ℝ𝑛 . The lattice generated by {𝑢1, 𝑢2} is the set ℒ = {𝐵𝑥 : 𝑥 ∈ ℤ2}.  
Lemma 3.1: In linear initialization method of SOM the vectors in the lattice ℒ generated by the basis {𝑢1, 𝑢2} ⊆ ℝ𝑛 form an abelian 

group under addition in ℝ𝑛 . 
Proof: 

1. For 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ ∈ ℒ, 𝑣1⃗⃗⃗⃗ + 𝑣2⃗⃗⃗⃗ ∈ ℒ (Closure Property) 

2. (𝑣1⃗⃗⃗⃗ + 𝑣2⃗⃗⃗⃗ ) + 𝑣3⃗⃗⃗⃗  = 𝑣1⃗⃗⃗⃗ + (𝑣2⃗⃗⃗⃗ + 𝑣3⃗⃗⃗⃗ ) (Associative Property) 

3. For every 𝑣 ∈ ℒ ∃ 0⃗ ∈ ℒ such that 𝑣 + 0⃗ = 𝑣  = 0⃗ + 𝑣 . (Additive Identity) 

4. For every 𝑣 ∈ ℒ ∃ − 𝑣 ∈ ℒ such that 𝑣 + −𝑣  = 0⃗  = −𝑣  + 𝑣 . (Additive inverse) 

Hence the lattice ℒ forms an abelian group under addition in ℝ𝑛[4]. 

Theorem 3.2: In linear initialization method of SOM the lattice ℒ formed by the basis {𝑢1, 𝑢2} in ℝ𝑛 is a discrete additive subgroup 

of ℝ𝑛. 

 

 

http://www.jetir.org/


© 2022 JETIR June 2022, Volume 9, Issue 6                                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2206956 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j415 
 

Proof: Assume that  ℒ is a lattice. 

For 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ ∈ ℒ, 𝑣1⃗⃗⃗⃗ − 𝑣2⃗⃗⃗⃗ ∈ ℒ. Hence ℒ is an additive subgroup of ℝ𝑛 . 
The length of any lattice vector must be greater than the length of a shortest lattice vector. 

Therefore, from the lower bound on a shortest lattice vector, ‖𝑣1⃗⃗⃗⃗ − 𝑣2⃗⃗⃗⃗ ‖ ≥ 𝜆1(ℒ). 
Let 𝜀 = 𝜆1(ℒ). 
Hence ‖𝑣1⃗⃗⃗⃗ − 𝑣2⃗⃗⃗⃗ ‖ ≥ 𝜀. 
Therefore, ℒ is a discrete additive subgroup of ℝ𝑛. 
Theorem 3.3: In linear initialization method of weight initialization in SOM, let 𝐵 be a 𝑛 × 2 basis matrix for a lattice ℒ which is a 

subset of ℝ𝑛 where 𝑛 > 2. Then there is a linear map 𝑃:ℝ𝑛 → ℝ2 such that 𝑃(ℒ) is a rank 2  lattice and ‖𝑃(𝑣 )‖ = ‖𝑣 ‖ for all 𝑣 ∈
ℒ. If the linear map is represented by a 2 × 𝑛 matrix 𝑃 so that 𝑃(𝑣 ) = 𝑃𝑣  then a basis matrix for the image of ℒ  under the projection 

𝑃 is the 2 × 2 matrix 𝑃𝐵 = 𝐼, the identity matrix, which is invertible. 

Proof: Let 𝐵 be the 𝑛 × 2 basis matrix with columns 𝑢𝑖⃗⃗  ⃗, 𝑖 = 1,2. 
Define 𝑉 = Span{𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ }  
By Gram-Schmidt orthogonalization process choose a basis 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗  for 𝑉 that is orthonormal with respect to the innerproduct in ℝ𝑛. 
Choose  𝑣1⃗⃗⃗⃗ = 𝑢1⃗⃗⃗⃗  

        𝑣2⃗⃗⃗⃗ = 𝑢2⃗⃗⃗⃗ −
〈𝑢2⃗⃗⃗⃗  ⃗,𝑣1⃗⃗ ⃗⃗  〉

〈 𝑣1⃗⃗ ⃗⃗  ,𝑣1⃗⃗ ⃗⃗  〉
 𝑣1⃗⃗⃗⃗   

Define a linear map 𝑃:𝑉 → ℝ2 by 𝑃(𝑣𝑖⃗⃗⃗  ) = 𝑒𝑖⃗⃗    

For 𝑣 = ∑ 𝑥𝑖𝑣𝑖⃗⃗⃗  
2
𝑖=1 ∈ 𝑉 we have 

‖𝑣 ‖ = √〈𝑣 , 𝑣 〉   

=√〈∑ 𝑥𝑖𝑣𝑖⃗⃗⃗  
2
𝑖=1 , ∑ 𝑥𝑖𝑣𝑖⃗⃗⃗  

2
𝑖=1 〉 

=√〈𝑥1𝑣1⃗⃗⃗⃗ + 𝑥2𝑣2⃗⃗⃗⃗ , 𝑥1𝑣1⃗⃗⃗⃗ + 𝑥2𝑣2⃗⃗⃗⃗ 〉 

=√𝑥1
2〈𝑣1⃗⃗⃗⃗ , 𝑣1⃗⃗⃗⃗ 〉 + 𝑥1𝑥2〈𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ 〉 + 𝑥2𝑥1〈𝑣2⃗⃗⃗⃗ , 𝑣1⃗⃗⃗⃗ 〉+𝑥2

2〈𝑣2⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ 〉 

=√𝑥1
2 + 𝑥2

2 since 〈𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ 〉 = 〈𝑣2⃗⃗⃗⃗ , 𝑣1⃗⃗⃗⃗ 〉 = 0 and 〈𝑣1⃗⃗⃗⃗ , 𝑣1⃗⃗⃗⃗ 〉 = 〈𝑣2⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ 〉 = 1. 

=‖𝑃𝑣 ‖ 

Since the vectors 𝑢𝑖⃗⃗  ⃗ form a basis for 𝑉, the vectors 𝑃𝑢𝑖⃗⃗  ⃗ are linearly independent. Hence 𝑃𝐵 is an invertible matrix and 𝑃(ℒ) is a 

lattice of rank 2. 

Theorem 3.4: In linear initialization method of SOM, for every input data vector 𝑥 ∈ ℝ𝑛, there exist a unique lattice vector 𝑣 ∈ ℒ, 

such that 𝑥 ∈ (𝑣 + 𝑃(𝑢1, 𝑢2)), where 𝑃(𝑢1, 𝑢2) is the fundamental parallelepiped associated to 𝑢1 and 𝑢2. 

Proof: Let 𝑃(𝑢1, 𝑢2) be the fundamental parallelepiped associated with 𝑢1 and 𝑢2. 

Let 𝑣 ∈ ℒ,  where ℒ is the lattice in ℝ𝑛. 
Then 𝑣 + 𝑃(𝑢1, 𝑢2) forms a partition of the whole space ℝ𝑛 [12]. 

This is because as 𝑃(𝑢1, 𝑢2) is a fundamental region, ℝ𝑛 = ⋃ (𝑣 + 𝑃(𝑢1, 𝑢2))𝑣⃗ ∈ℒ  and for every 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ ∈ ℒ with 𝑣1⃗⃗⃗⃗  ≠  𝑣2⃗⃗⃗⃗ , 

(𝑣1⃗⃗⃗⃗ + 𝑃(𝑢1, 𝑢2)) ∩ (𝑣2⃗⃗⃗⃗ + 𝑃(𝑢1, 𝑢2)) = 𝜙.   

Hence for every 𝑥 ∈  ℝ𝑛 , there exists a unique point 𝑣 ∈ ℒ,  such that 𝑥 ∈ (𝑣 + 𝑃(𝑢1, 𝑢2)).  

Theorem 3.5: In linear initialization of SOM, let ℒ be a lattice of rank 2, and 𝑢1, 𝑢2 ∈ ℒ be two linearly independent lattice vectors 

then {𝑢1, 𝑢2} form a basis of ℒ if and only if 𝑃(𝑢1, 𝑢2) ∩ ℒ = {0}. 
Proof: Assume first 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  form a basis of lattice ℒ. Then by definition, ℒ is the set of all integer linear combinations of 𝑢1⃗⃗⃗⃗  and 

𝑢2⃗⃗⃗⃗ . 
Since 𝑃(𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ ) is defined as the set of linear combinations of 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  with coefficients in [0,1), the intersection of two sets is {0}. 

Conversely, assume 𝑃(𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ ) ∩ ℒ ={0}. Since ℒ is a rank 2 lattice and 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  are linearly independent, we can write any lattice 

vector 𝑥 ∈ ℒ as ∑𝑥𝑖𝑢𝑖⃗⃗  ⃗ for some 𝑥𝑖 ∈ ℝ. 
Since by definition a lattice is closed under addition, the vector 𝑥1 = ∑(𝑥𝑖 − ⟦𝑥𝑖⟧)𝑢𝑖⃗⃗  ⃗ is also in ℒ, where ⟦𝑥𝑖⟧ denotes the greatest 

integer less than or equal to 𝑥𝑖 . 
By our assumption, 𝑥1 = 0. 
Hence ∑𝑥𝑖𝑢𝑖⃗⃗  ⃗ = ∑⟦𝑥𝑖⟧𝑢𝑖⃗⃗  ⃗. 
This implies that all 𝑥𝑖′𝑠 are integers and hence 𝑥  is an integer linear combination of 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗  .  
Therefore {𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ } form a basis of ℒ. 
Definition 3.6: The determinant of a lattice ℒ with basis 𝐵 is |det (𝑃𝐵)| , where 𝑃 is the projection of Theorem 3.3. 
Remark: The determinant of a lattice is inversely proportional to the density of lattice vectors. Hence smaller the value of determinant 

the denser will be the lattice. If we take a large ball 𝐵(0, 𝑟) with center at the origin and radius 𝑟 in the span of 𝐿(𝐵) then the number 

of lattice vectors inside 𝐵(0, 𝑟) approaches to 
𝑣𝑜𝑙(𝐵(0,𝑟))

det (𝐿(𝐵))
 as the size of the ball goes to infinity. This gives an approximate number of 

lattice vectors inside the ball 𝐵(0, 𝑟) in SOM. 

IV. EXPERIMENTAL ANALYSIS 

Analysis of Theorem 3.3 is done with datasets from UCI machine learning repository and using MATLAB R2021a [3], [13]. The 

datasets used are IrisInputs which is a 4 × 150 matrix of four attributes (petal length, petal width, sepal length, and sepal width) of 

150 flowers. The covariance matrix for each dataset is evaluated and from that the corresponding eigenvectors and eigenvalues are 

found. The eigenvectors corresponding to the largest two eigenvalues are taken as 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗ . Table 1 shows the covariance matrix 

for IrisInputs dataset. Table 2 gives the eigenvectors and eigenvalues of the covariance matrix. In Table 3 the largest two eigenvectors 

𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗ , the basis matrix 𝐵 formed by 𝑢1⃗⃗⃗⃗  and 𝑢2⃗⃗⃗⃗ , the matrix 𝑃, which is the projection matrix are given. Table 4 gives two vectors 

in Span{𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ } and shows that ‖𝑃𝑣 ‖ = ‖𝑣 ‖ for each of these vectors. In Table 5 the basis matrix 𝐵 for lattice ℒ, the projection 

matrix 𝑃, and its product matrix 𝑃𝐵 are found, showing that the product matrix 𝑃𝐵 is an Identity matrix and is invertible. 
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Table 1: Covariance matrix 

Data(X) A=Cov(X) 

IrisInputs 

0.6857 -0.0393 1.2737 0.5169 

-0.0393 0.1880 -0.3217 -0.1180 

1.2737 -0.3217 3.1132 1.2964 

0.5169 -0.1180 1.2964 0.5824 

 

Table 2: Eigenvectors and eigenvalues of the covariance matrix 

Data(X) Eigenvector(A) Eigenvalue(A) 

IrisInputs 

-0.3173 0.5810 0.6565 0.3616 0.0237 0 0 0 

0.3241 -0.5964 0.7297 -0.0823 0 0.0785 0 0 

0.4797 -0.0725 -0.1758 0.8566 0 0 0.2422 0 

-0.7511 -0.5491 -0.0747 0.3588 0 0 0 4.2248 

 

Table 3: The largest two eigenvectors and the basis matrix B 

Data(X) 𝑢1⃗⃗⃗⃗  𝑢2⃗⃗⃗⃗  𝐵 = [𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ ] 𝑃 = 𝐵𝑇  

IrisInputs 

0.3616 0.6565 

[

0.3616 0.6565
−0.0823 0.7297
0.8566 −0.1758
0.3588 −0.0747

] 

 

[
0.3616 −0.0823 0.8566 0.3588
0.6565 0.7297 −0.1758 −0.0747

] -0.0823 0.7297 

0.8566 -0.1758 

0.3588 -0.0747 

 

Table 4: Two vectors 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗  in Span{𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ } showing ‖𝑃𝑣 ‖ = ‖𝑣 ‖ 

Data(X) 𝑣1⃗⃗⃗⃗ = 2𝑢1⃗⃗⃗⃗ + 𝑢2⃗⃗⃗⃗  𝑣2⃗⃗⃗⃗ = 3𝑢1⃗⃗⃗⃗ − 𝑢2⃗⃗⃗⃗   𝑃𝑣1⃗⃗⃗⃗  𝑃𝑣2⃗⃗⃗⃗  ‖𝑣1⃗⃗⃗⃗ ‖ ‖𝑣2⃗⃗⃗⃗ ‖ ‖𝑃𝑣1⃗⃗⃗⃗ ‖ ‖𝑃𝑣2⃗⃗⃗⃗ ‖ 

IrisInputs 

1.3797 0.4282  

[
2
1
] 

 

[
3

−1
] 2.2361 3.1623 2.2361 3.1623 

0.5652 -0.9765 

1.5374 2.7455 

0.6430 1.1512 

 

Table 5: The basis matrix 𝐵 of lattice ℒ, the projection matrix 𝑃 and its product matrix 𝑃𝐵 

Data(X) 𝑃 𝐵 𝑃𝐵 

IrisInputs 

 

[
0.3616 −0.0823 0.8566 0.3588
0.6565 0.7297 −0.1758 −0.0747

] [

0.3616 0.6565
−0.0823 0.7297
0.8566 −0.1758
0.3588 −0.0747

] 

 

[
1 0
0 1

] 

 

 

V. CONCLUSION 

In this work, a new approach to SOM is introduced by using lattice vectors. In the linear initialization method of weight 

initialization in SOM, the algebraic and geometric properties of lattice vectors are studied. It is shown that for each data vector in the 

input space there exists a unique lattice vector in the fundamental region associated with the basis vectors of the lattice. Experimental 

analysis is done using MATLAB R2021a by taking datasets from the UCI machine learning repository. Future studies can be 

conducted on random sample initialization of weight initialization in self-organizing maps. 
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